

Karanjia Auto College, Karanjia,Mayurbhanj

Model questions on Atomic Structure

Carrying 1 mark each

1. What is the ratio of e / m for a cathode ray?
2. The ionization potential of hydrogen atom is 13.6 eV . What is the energy required to remove an electron in the $\mathrm{n}=2$ state of hydrogen atom?
3. What is the ratio of the radii of the first three Bohr orbit?
4. Which of the following sets of quantum numbers is possible for an electron in a 4 f orbital?

1
(a) $n=4, I=2, m=2, s=+\quad-$
2
(b) $\mathrm{n}=4, \mathrm{I}=4, \mathrm{~m}=+4, \mathrm{~s}=+-$
2
1
1
(d) $\mathrm{n}=4, \mathrm{I}=3, \mathrm{~m}=4, \mathrm{~s}=+\quad-$

2
2
5. The number of orbitals in $n=3$ are \qquad
6. What is the orbital angular momentum of an electron in 2 s orbital?
7. Which of the following relates to photons both as wave motion and as a stream of particles?
(a) Interference
(b) $\mathrm{E}=\mathrm{mc}^{2}$
(c) Diffraction
(d) $E=h \square$
8. The number of nodal planes in a ${ }^{p} x$ orbital is \qquad
9. For a hydrogen atom, the energies that an electron can have are given by the expression, $\mathrm{E}=$ $-13.58 / \mathrm{n}^{2} \mathrm{eV}$, where n is an integer. The smallest amount of energy that a hydrogen atom in the ground state can absorb is \qquad
10. The radial probability distribution curve obtained for an orbital wave function (\upharpoonright) has 3 peaks and 2 radial nodes. The valence electron of which one of the following metals does this wave function (\$correspond to?
(a) Co
(b) Li
(c) K
(d) Na
11. A photon with initial frequency $10^{11} \mathrm{~Hz}$ scatters off an electron at rest. Its final frequency is $0.9 \times 10^{11} \mathrm{~Hz}$. The speed of scattered electron is close to ($\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}, \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$)
(a) $4 \times 10^{3} \mathrm{~ms}^{-1}$
(b) $3 \times 10^{2} \mathrm{~ms}^{-1}$
(c) $2 \times 10^{6} \mathrm{~ms}^{-1}$
(d) $30 \mathrm{~ms}^{-1}$

Carrying 1.5 marks each

1. What is the ratio of $2^{\text {nd }}, 4^{\text {th }}$ and $6^{\text {th }}$ orbits of hydrogen atom?
2. The frequency of a green light is $6 \times 10^{14} \mathrm{~Hz}$. Calculate its wavelength?
3. The values of charge on the oil droplets experimentally observed were $-1.6 \times 10^{-19},-2.4 \times$ 10^{-19} and -4×10^{-19} coulomb. What is the value of the electronic charge, indicated by these results?
4. What is the ratio of the difference in energy between the first and second Bohr orbits to that between the second and third Bohr orbit?
5. The electrons, identified by quantum numbers n and I, (i) $n=4, I=1$ (ii) $n=4, I=0$, (iii) $n=3$, $\mathrm{I}=2$ and (iv) $\mathrm{n}=3, \mathrm{I}=1$; place in order of increasing energy, from the lowest to highest.
6. What is the order of wavelength associated with a golf ball weighing 200 g and moving at a speed of $5 \mathrm{~m} / \mathrm{h}$?
7. A gas absorbs a photon of 355 nm and emits two wavelengths. If one of the emission is at 680 nm , the other is at?
8. In which of the following orbital diagram 'Aufbau principle' is violated? Explain.

9. Binding energy per nucleon of three nuclei A, B and C are $5.5,8.5$ and 7.5 respectively. Which nucleus is most stable? Explain.
10. The mass of ${ }_{3}{ }^{7} L i$ is 0.042 less than the mass of 3 protons and 4 neutrons. What is the binding energy per nucleon in ${ }_{3}{ }^{7} L i$?
11. The highest energy in Balmer series, in the emission spectra of hydrogen is represented by
\qquad cm^{-1}

Carrying 2 marks each

1. Determine the de Broglie wavelength of
a. an electron moving at $1 / 10$ the speed of light.
b. a 400 g Frisbee moving at $10 \mathrm{~km} / \mathrm{h}$.
c. an 8.0-pound bowling ball rolling down the lane with a velocity of 2.0 meters per second.
d. a 13.7 g hummingbird flying at a speed of 30.0 miles per hour.
2. The transition from the $n=7$ to the $n=2$ level of the hydrogen atom is accompanied by the emission of radiation slightly beyond the range of human perception, in the ultraviolet region. Determine the energy and wavelength.
3. Emissions are observed at wavelengths of 383.65 and 379.90 nm for transitions from excited states of the hydrogen atom to the $\mathrm{n}=2$ state. Determine the quantum numbers n_{h} for these emissions.
4. State the following principles
a. Pauli exclusion principle
b. Hund's rule of maximum multiplicity
5. For the $3 p_{z}$ and $4 d_{x z}$ hydrogen-like atomic orbitals, sketch the following:
a. The radial function R
b. The radial probability function $a_{0} r^{2} R^{2}$
6. What is the quantum number I for g orbitals? How many orbitals are in a g subshell?
7. Define and state the conditions of normalized and orthogonal wave functions.
8. Write down the limitations of Aufbau principle.
9. Write down the limitations of Bohr's theory.
10. Write down the limitations of Sommerfeld's extension to Bohr's theory.
11. State Heisenberg's uncertainty principle and its significances.
12. State significances of ψ and ψ^{2}.
13. What is Hamiltonian operator (H)? Express Schrödinger wave equation in terms of H .
14. State significances of four quantum numbers.
15. Describe the angular nodal surfaces for a $d_{2} 2$ orbital, whose angular wave function is

$$
Y=\frac{1}{4} \sqrt{\frac{5}{\pi}} \frac{\left(2 z^{2}-x^{2}-y^{2}\right)}{r^{2}}
$$

16. Write down the equation for the solutions of Schrödinger wave equation in terms of polar coordinates.
17. Does an orbital exist if there's no electron in it?

Carrying 6 marks each

1. Briefly describe various postulates and limitations of Bohr's theory.
2. Derive Schrödinger equation for the wave mechanical model of an atom. Discuss significances of ψ and ψ^{2}. Express Schrödinger wave equation in terms of Hamiltonian operator (H).
3. Write down Schrödinger equation for the wave mechanical model of an atom. State the names and significances of quantum numbers yielded by the solution of this equation.
4. a) What do understand by dual character of matter? Derive de Broglie equation. How was it verified experimentally?
b) Differentiate matter waves and electromagnetic waves. Why wave nature of matter is not apparent in our daily observations.
c) Explain that concept of probability follows Heisenberg's uncertainty principle.

The orbital $4 f_{z\left(x^{2}-y^{2}\right)}$ has the angular function 5.

$$
Y=(\text { constant }) z\left(x^{2}-y^{2}\right) / r^{3}
$$

a. How many radial nodes does this orbital have?
b. How many angular nodes does it have?
c. Write equations to define the angular nodal surfaces. What shapes are these surfaces?
d. Sketch the shape of the orbital, and show all radial and angular nodes.
6. Derive expressions for complete wave functions of $s / p / d$-orbital. Explain how these expressions account for various shapes of $\mathrm{s} / \mathrm{p} / \mathrm{d}$-orbital.
7. Clearly distinguish the following aspects of the structure of an atom and sketch the appropriate function for $1 s, 2 s, 2 p, 3 s$ and $3 p$ orbitals. a. Radial wave function b) Radial probability function
c) Angular wave function
d) Angular probability function

Model questions on Periodic Properties of elements

Carrying 1 mark each

1. An element belongs to period 2 and group 2 , then number of valence electrons in the atoms of this element is?
2. If the aufbau principle had not been followed, $\mathrm{Ca}(Z=20)$ would have been placed in which block?
3. What is the atomic number of the element with the maximum number of unpaired $4 p$ electron?
4. If period number and group number of any representative element(s) are same then which of the following statement is incorrect regarding such type element(s) in their ground state:
(Period number and group number are according to modern form of periodic table)
A. The possible value of principal quantum number is 2
B. The possible value of azimuthal quantum number is zero
C. The possible value of magnetic quantum number is 1
D. The species could be paramagnetic
5. How does the energy gap between successive energy levels in an atom vary from low to high values?
6. Write down the increasing order of acidity of the oxides of $\mathrm{Mn}\left(\mathrm{MnO}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{7}\right)$.
7. The correct order of ionic size of $\mathrm{N} 3-, \mathrm{Na}+\mathrm{F}-, \mathrm{Mg} 2+$ and $\mathrm{O} 2-$ is \qquad
8. Incorrect order of ionic size is:
A. $\mathrm{La}_{3}+>\mathrm{Gd}_{3+}>\mathrm{Eu}_{3+}+\mathrm{Lu}_{3+}$
B. $\mathrm{V}_{2+}>\mathrm{V}_{3+}>\mathrm{V}_{4+}>\mathrm{V}_{5+} \mathrm{C}$. $\mathrm{Tl}^{+}>\mathrm{In}^{+}>\mathrm{Sn}^{2+}>\mathrm{Sb}^{3+}$
D. $\mathrm{K}_{+}>\mathrm{SC}_{3+}>\mathrm{V}_{5+}>\mathrm{Mn}_{7+}$
9. Among $\mathrm{NaF}, \mathrm{NaCl}, \mathrm{NaBr}$ and NaI , the NaF has highest melting point because \qquad
10. The elements with the lowest atomic number that has a ground state electronic configuration of ($\mathrm{n}-$ 1) $d^{6} n s^{2}$ is located in the period \qquad
11. The period number and group number of "Tantalum" $(Z=73)$ are respectively \qquad and \qquad
12. $[\mathrm{Xe}] 4 \mathrm{f}^{14} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$ belongs to \qquad period and \qquad group.

Carrying 1.5 marks each

1. Explain the correct order of second I. E. of C, N, O and F.
2. Consider the following changes $A \rightarrow A^{+}+e^{-}: E 1$ and $A^{+} \rightarrow A^{2+}+e^{-}: E 2$

The energy required to pull out the two electrons are E and E respectively. The correct relationship between two energies would be E1 \qquad E2.
3. The correct order of increasing electron affinity of $\mathrm{O}, \mathrm{S}, \mathrm{F}$ and Cl is \qquad
4. If the ionization and electron gain enthalpy of an element are 275 and $86 \mathrm{Kcal}^{2} \mathrm{~mol}^{-1}$ respectively, then the electro negativity of the element on the Mulliken scale is \qquad
5. The atomic numbers of the metallic and non-metallic elements which are liquid at room temperature respectively are \qquad and \qquad
6. What is the correct order of increasing first ionization enthalpy for $\mathrm{Ca}, \mathrm{Ba}, \mathrm{S}, \mathrm{Se}$ and Ar ?
7. Sodium generally does not show oxidation state of +2 . Why?
8. In the fourth period of the periodic table, how many elements have one or more 4d electrons?
9. Assuming that elements are formed to complete the seventh period, what would be the atomic number of the alkaline earth metal of the eighth period?
10. Why Zn and Cd metals do not show variable valency?
11. A compound contains three elements A, B and C , if the oxidation number of $\mathrm{A}=+2, \mathrm{~B}=+5$ and $\mathrm{C}=-2$, the possible formula of the compound is \qquad
12. Consider the following information about element P and Q :

Element

Period
Group

P
215

Q 32

Then formula of the compound formed by P and Q element is \qquad
13. Which is the most stable cation of element 113? Explain.
14. Using Slater's rules, determine Z^{*} for a 2 p electron in O^{2-}.
15. Why Sn often forms an ion having a charge of $2+$?

1. What states are possible for a d^{3} configuration? Determine the Coulombic and exchange energies for each, and rank the states in terms of relative energy.
2. The electron configuration of Ti is $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 d^{2}$, but that of Cr^{2+} is [Ar] $3 d^{4}$. Explain.
3. Give electron configurations for the following:
a. V
b. Br
c. $R u^{3+}$
d. Hg^{2+}
e. $S b$
4. The electron configuration of the molybdenum atom is $[K r] 5 s^{1} 4 d^{5}$ rather than $[K r] 5 s^{2} 4 d^{4}$. Explain.
5. The most common ion formed by zinc has a $2+$ charge. Explain.
6. $C m$ has the outer electron configuration $s^{2} d^{1} f^{7}$ rather than $s^{2} f^{8}$. Explain.
7. The second ionization of carbon ($\mathrm{C}^{+} \rightarrow \mathrm{C}^{2+}+\mathrm{e}^{-}$) and the first ionization of boron ($\mathrm{B} \rightarrow \mathrm{B}^{+}+\mathrm{e}^{+}$) both fit the reaction $1 s^{2} 2 s^{2} 2 p^{1} \rightarrow 1 s^{2} 2 s^{2}+e-$. Compare the two ionization energies (24.383 eV and 8.298 eV , respectively) and the effective nuclear charge Z^{*}. Is this an adequate explanation of the difference in ionization energies? If not, suggest other factors.
8. Ionization energies should depend on the effective nuclear charge that holds the electrons in the atom. Calculate Z* (Slater's rules) for N, P, and As. Do their ionization energies seem to match these effective nuclear charges? If not, what other factors influence the ionization energies?
9. In each of the following pairs, pick the element with the higher ionization energy and explain your choice. a) Fe, Ru b) P, S c) K, Br d) C, N e) Cd , \ln f) Cl, F
10. On the basis of electron configurations, explain why a. sulfur has a lower electron affinity than chlorine.
b. boron has a lower ionization energy than beryllium.
11. Calculate the effective nuclear charge on a $5 s, 5 p$, and $4 d$ electron in a tin atom.
12. Which of the halogens, X_{2}, would you expect to be most likely to form a cation, X^{+}? Discrete X^{+}ions are not known in chemical compounds but $\mathrm{X}_{2}{ }^{+}, \mathrm{X}_{3}{ }^{+}$and $\mathrm{X}_{5}{ }^{+}$are known. Why should the latter be more stable than X^{+}?
13. Discuss the formula for calculating Sanderson's electron density ratio with suitable examples.

Carrying 6 marks each

1. What is screening effect? Discuss the trend of screening effect along the periods and groups. Describe Slater's rules. Discuss its role in determining the effective nuclear charge for any electron in an atom and its limitations.
2. Using Slater's rules, determine Z^{*} for
a) a $3 p$ electron in $P, S, C l$, and $A r$. Is the calculated value of Z^{*} consistent with the relative sizes of these atoms?
b) a 2 p electron in $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}$and Mg^{2+}. Is the calculated value of Z^{*} consistent with the relative sizes of these ions?
c) a 4s and a 3d electron of Cu. Which type of electron is more likely to be lost when copper forms a positive ion?
d) a 4 f electron in Ce, Pr, and Nd . There is a decrease in size, commonly known as the lanthanide contraction, with increasing atomic number in the lanthanides. Are your values of Z^{*} consistent with this trend?
3. Select the best choice, and briefly indicate the reason for each choice:
a) Largest radius: $\quad \mathrm{Na}^{+} \quad \mathrm{Ne} \quad \mathrm{F}^{-}$
b) Greatest volume: $\quad \mathrm{S}^{2-} \quad \mathrm{Se}^{2-} \quad \mathrm{Te}^{2-}$
c) Highest ionization energy: Na Mg Al
d) Most energy necessary
to remove an electron: $\quad \mathrm{Fe} \quad \mathrm{Fe}^{2+} \quad \mathrm{Fe}^{3+}$ e.
Highest electron affinity: O
$F \quad \mathrm{Ne}$
f. Smallest radius: $\quad \mathrm{Y}^{3+} \quad \mathrm{Zr}^{4+} \quad \mathrm{Nb}^{5+}$
4. a) The graph of ionization energy versus atomic number for the elements Na through Ar (Figure) shows maxima at Mg and P and minima at Al and S . Explain these maxima and minima.
b) The graph of electron affinity versus atomic number for the elements Na through Ar (Figure) also shows maxima and minima, but shifted by one element in comparison with the ionization energy graph. Why are the maxima and minima shifted in this way?
c) For a graph of third ionization energy against atomic number, predict the positions of peaks and valleys for elements through atomic number 12. Compare the positions of these peaks and valleys with those for first ionization energies shown in Figure.
d) How would a graph of second ionization energy vs. atomic number for the elements helium through neon compare with the graph of first ionization energy in the Figure? Be specific in comparing the positions of peaks and valleys.

Atomic number
5. a) Explain why all three graphs in the Figure have maxima at 4 electrons and minima at 5 electrons.
b) How would a graph of third ionization energies against the number of electrons in reactant compare with the other graphs shown in the Figure? Explain briefly.

6. The size of the transition-metal atoms decreases slightly from left to right in the periodic table. What factors must be considered in explaining this decrease? In particular, why does the size decrease at all, and why is the decrease so gradual? Also discuss trend of electron gain enthalpy along the periods and groups.
7. What is Ionization enthalpy? Discuss successive ionization enthalpies and its trend with suitable examples and factors affecting ionization energy. Elaborate applications of ionization enthalpy.
8. What is electronegativity? Write down the formula for calculation using Pauling's and Mulliken's electronegativity scales. Discuss the variation of electronegativity with bond order, partial charge and hybridization.

Model questions on Chemical Bonding

Carrying 1 mark each

1. The Geometry of TeCl_{4} is \qquad
2. The bond angle of $\mathrm{Cl}_{2} \mathrm{O}$ is
(a) Smaller than that of $\mathrm{F}_{2} \mathrm{O}$
(b) Smaller than that of $\mathrm{H}_{2} \mathrm{O}$
(c) Greater than that of $\mathrm{H}_{2} \mathrm{O}$
(d) Same as that of $\mathrm{F}_{2} \mathrm{O}$
3. The bond order in $\mathrm{O}_{2}{ }^{+}$is \qquad
4. According to VSEPR model, the shape of $\left[\mathrm{XeOF}_{5}\right]^{-}$is \qquad
5. The $\mathrm{C}-\mathrm{H}$ bond length is greatest in
(a) CH_{4}
(b) $\mathrm{CH}_{3} \mathrm{~F}$
(c) $\mathrm{CH}_{2} \mathrm{~F}_{2}$
(d) CHF_{3}
6. Among the following, the number of molecules which do not exist are \qquad $\mathrm{IF}_{7}, \mathrm{SH}_{6}, \mathrm{XeH}_{4}, \mathrm{PH}_{5}, \mathrm{ClF}_{3}$, $\mathrm{ClH}_{3}, \mathrm{BrF}_{5}$
7. The number of molecular orbital nodel plane (s) in BMO formed from p-p sideways overlapping is (are)
\qquad
8. The $\mathrm{F}-\mathrm{B}-\mathrm{F}$ bond angle in BF_{3} is \qquad degree.
9. The number of molecules with bond angle near to 900 are \qquad $\mathrm{CH}_{4}, \mathrm{SiF}_{4}, \mathrm{BrF}_{5}, \mathrm{XeF}_{4}, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{~S}$
10. The number of molecules having bond angle greater than $\mathrm{H}_{2} \mathrm{O}$ are \qquad $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{PH}_{3}, \mathrm{Cl}_{2} \mathrm{O}, \mathrm{F}_{2} \mathrm{O}$
11. The percentage s-character in lone pair of NH_{3} is \qquad \%
12. If p_{z} and $d_{z x}$ orbital overlapped, then the bond formed will be \qquad bond, if the internuclear axis is ' x ' axis.
13. Which is incorrect representation of mixing:
(a) 니
(c)

(b)
14. The hybridization state in triangle bipyramidal $\mathrm{CH}_{5}{ }^{+}$is \qquad
15. Which is the strongest bond among:
(a) $2 p \square-2 p \square$
(b) $3 p-3 p \quad \square$
(c) $3 d-3 d \quad \square$
(d) $3 d-2 p \square \quad \square$
16. Hybridization on cubic $\left[P a F_{8}\right] \quad$ is \qquad

प००

17. Give an example where d a $\square p$ bond is possible.
18. In octahedral structure the pair of ' d ' orbitals involved is \qquad and \qquad
19. The ONO angle is maximum in $\left(\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2}^{-} / \mathrm{NO}_{2} / \mathrm{NO}_{2}{ }^{+}\right)$
20. Why P_{2} coverts into P_{4} ?

Carrying 1.5 marks each

1. Write down the correct bond angle order. $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$
2. What is the correct order of p-p bond length in $P_{2} F_{4}, P_{2}\left(\mathrm{CH}_{3}\right)_{4}, P_{2}\left(\mathrm{CF}_{3}\right)_{4}$ and $\mathrm{P}_{2} \mathrm{H}_{4}$?
3. In a rectangular octahedral molecule $M X_{6}$, the number of $\mathrm{X}-\mathrm{M}-\mathrm{X}$ bonds at $180^{\circ} \mathrm{C}$ is \qquad .
4. Justify the correct order of bond angle
(a) $\mathrm{CCl}_{4}>\mathrm{BF}_{3}>\mathrm{NO}_{2}{ }^{+}$
(b) $\mathrm{NH}_{3}>\mathrm{NCl}_{3}>\mathrm{NBr}_{3}$
(c) $\mathrm{Br}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}>\mathrm{OF}_{2}$
(d) $\mathrm{PCl}_{3}>\mathrm{PBr}_{3}>\mathrm{Pl}_{3}$
5. What is the ratio of sigma and pi-bonds in naphthalene?
6. If CH_{4} is assumed to give two disubstituted products, then what is the shape of CH_{4} ?
7. State Fajan's rules.
8. Which molecule has the smallest bond angle in each series?
(a) $\mathrm{OSeF}_{2} \quad \mathrm{OSeCl}_{2} \quad \mathrm{OSeBr}_{2}$ (halogen-Se-halogen angle)
(b) $\mathrm{SbCl}_{3} \quad \mathrm{SbBr}_{3} \quad \mathrm{Sbl}_{3}$
(c) $\mathrm{Pl}_{3} \quad \mathrm{Asl}_{3} \quad \mathrm{Sbl}_{3}$
9. Give Lewis dot structures and sketch the shapes of the following:
(a) SeCl_{4}
b. I_{3}^{-}c. PSCl_{3} (P is central)
10. Compare the structures of the azide ion, $\mathrm{N}_{3}{ }^{-}$, and the ozone molecule, O_{3}.
11. How would you expect the structure of the ozonide ion, $\mathrm{O}_{3}{ }^{-}$, to differ from that of ozone?
12. PCl_{5} is a stable molecule, but NCl_{5} is not. Explain.
13. Why SF_{4} and SF_{6} are known, but OF_{4} and OF_{6} are not?
14. Are the CF_{3} groups in $\mathrm{PCl}_{3}\left(\mathrm{CF}_{3}\right)_{2}$ more likely axial or equatorial? Explain briefly.
15. Are the axial or equatorial bonds likely to be longer in SbCl_{5} ? Explain briefly.
16. Select the molecule having the smallest bond angle and briefly explain: $\mathrm{NH}_{3}, \mathrm{PH}_{3}$, or AsH_{3}
17. $\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right]^{-}$Draw the resonating structures of this ion.
18. Draw the resonating structures of dimethylthiocarbamate ion.
19. $\mathrm{NSCl}_{2}{ }^{-}$and OSCl_{2} : Which of these species has the smaller $\mathrm{Cl}---\mathrm{S}---\mathrm{Cl}$ angle? Explain briefly.
20. Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, has a much higher boiling point than methyl mercaptan, $\mathrm{CH}_{3} \mathrm{SH}$. Explain. Carrying 2 marks each
21. In PF_{4}^{+}the $\mathrm{F}---\mathrm{F}$ and $\mathrm{P}-\mathrm{F}$ distances are 238 pm and 145.7 pm , respectively. Predict the P —F distance in POF_{3}, which has an $\mathrm{F}-\mathrm{P}-\mathrm{F}$ angle of 101.1°.

Briefly account for the following observations:

2. The bond angle in NCl_{3} is nearly 5 degrees larger than in NF_{3}.
3. The $S-F$ axial distance in SOF_{3} is longer than the $\mathrm{S}-\mathrm{F}$ equatorial distance.
4. In $\mathrm{Te}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{I}_{2}$ the methyl groups are in equatorial, rather than axial, positions.
5. The $\mathrm{O}-\mathrm{S}-\mathrm{O}$ bond angle in $\mathrm{FSO}_{2}\left(\mathrm{OCH}_{3}\right)$ is larger than in $\mathrm{FSO}_{2}\left(\mathrm{CH}_{3}\right)$.
6. Carbon monoxide has slightly higher melting and boiling points than N_{2}.
7. The ortho isomer of hydroxybenzoic acid $\left[\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{H}\right)\right]$ has a much lower melting point than the meta and para isomers.
8. The boiling points of the noble gases increase with atomic number.
9. Acetic acid in the gas phase has a significantly lower pressure (approaching a limit of one half) than predicted by the ideal gas law.
10. Mixtures of acetone and chloroform exhibit significant negative deviations from Raoult's law, which states that the vapor pressure of a volatile liquid is proportional to its mole fraction. For example, an equimolar mixture of acetone and chloroform has a lower vapor pressure than either of the pure liquids.
11. Carbon monoxide has a greater bond-dissociation energy ($1072 \mathrm{~kJ} / \mathrm{mol}$) than molecular nitrogen (945 $\mathrm{kJ} / \mathrm{mol}$).

Discuss the following.

12. General characteristics of an ionic bond 24. Limitations of VSEPR theory
13. Limitations of radius ratio rule 25. Polarizing power and polarizability
14. Madelung constant 26. Ionic character in covalent compounds
15. Applications of Born-Haber cycle 27. Percentage ionic character from dipole
16. Solvation energy moment and EN difference
17. Postulates of VBT
18.

Metallic Bond
18. Heitler-London approach to VBT 29. Van der Waals forces
19. Limitations of VBT 30. Ion- dipole forces
20. Resonance energy 31. Dipole-dipole interactions
21. M.O. Diagram of N2 / O2 / C2 / B2 / F2 / CO / NO 32. Induced dipole interactions / $\mathrm{CO}^{+} / \mathrm{NO}^{+} / \mathrm{NO}^{-}$
22. Covalent character in ionic compounds
23. Postulates of VSEPR theory 34. Hydrogen bonding
35. Which has the smaller $\mathrm{F}-\mathrm{P}-\mathrm{F}$ angle, $\mathrm{PF}_{4}{ }^{+}$or $\mathrm{PF}_{3} \mathrm{O}$? Which has the longer fluorine-fluorine distance? Explain briefly.

Carrying 6 marks each

1. (a) What is an ionic bond?
(b) Discuss carefully the formation of an ionic bond in terms of decrease of energy. Derive from it the conditions for the formation of ionic bonds.
(c) Explain giving suitable examples why ions with three positive or three negative charges are rare?
2. (a) Discuss the formation of a covalent bond on the basis of the orbital overlap concept: What is meant by a sigma bond?
(b) Differentiate between a sigma bond and a pi bond. Explain why a sigma bond is stronger than a pi bond?
(c) Explain the term covalency. How would you account for variable covalency of an element? What is the maximum covalency which an element can exhibit?
(d) Construct a plot of potential energy versus internuclear distance between two hydrogen atoms.
3. (a) What do you understand by polar and non-polar molecules? Is it possible for the non-polar molecules to have polar bonds? Justify you answer with examples.
(b) Explain why CO_{2} and CCl_{4} molecules are non-polar while CHCl_{3} molecule is polar?
(c) What is meant by dipote moment? Can its magnitude give an idea about the structure of a molecule? Explain giving examples.
(d) Which is more polar, $\mathrm{H}_{2} \mathrm{~S}$ or $\mathrm{H}_{2} \mathrm{O}$ and why ?
4. (a) What is the difference between coordinate bond and covalent bond?
(b) Under what circumstances can a fully filled orbital participate in bond formation? Discuss with an example.
(c) PCl_{5} exists while NCl_{5} does not. Explain.
5. What is Valence Bond theory? Explain.

In the potential energy diagram for H_{2} molecule, the combined wave function ψ for two hydrogen atoms $\psi=\psi_{\mathrm{A}}$ (1) $\psi_{A}(2)$ (where $\psi_{A}(1)$ and ψ_{B} (2) represent wave functions for two hydrogen atoms H_{A} and H_{B} associated with electrons 1 and 2, respectively), results in decrease in energy of the system by $24 \mathrm{~kJ} \mathrm{~mol}^{-1}$. But the experimental value is $458 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What improvements in the wave functions of the system are matide to account for this difference?
6. (a) What is resonance? Discuss by taking example of CO_{3}^{2-} ion.
(b) What do you understand by the term resonance energy? What are the essential rules for writing resonating structures?
7. (a) What is Molecular Orbital theory ?
(b) Give the electron charge density diagrams for bonding and antibonding molecular orbitals.
(c) Predict the bond order in C_{2} molecule with the help of MO diagram.
8. (a) What do you understand by the terms bonding and antibonding molecular orbitals? Why are they so called? Illustrate your answer by taking into consideration the structure of hydrogen ion H_{2}^{+}.
(b) Is B_{2} molecule paramagnetic or diamagnetic ? Discuss.
9. Explain how the atomic orbitals combine to form bonding and antibonding molecular orbitals. What are the limitations to such combinations? Explain why in a homonuclear molecule, an s orbital of one atom cannot combine with a p_{x} or a p_{y} orbital of another atom of the same element.
10. (a) Draw molecular orbital diagram for HF molecule.

(a) Oxygen molecule is paramagnetic while nitrogen molecule is diamagnestic.
(b) Hydrogen forms diatomic molecule while helium remains monoatomic.
(c) The bond order in O_{2}^{-}is less than that in O_{2} which, in turn, is less than that in O_{2}^{+}.
12. (a) The internuclear distanees-insome -0 - O bunds are as follows :

O_{2}^{+}	O_{2}	O_{2}		O_{2}^{2-}
$1 \cdot 12 \AA$	$1 \cdot 2.1 \AA$	$1.30 \AA$	$1.49 \AA$	

(i) Account for the gradation of the internuclear distances in the above series.
(ii) Which of these species are paramagnetic?
(b) Is it correct to say that bond energy in a diatomic molecule always increases when an electron is lost ?
(c) "While in the case of F_{2} molecule, all the orbitals are molecular, in case of HF molecule there is only one orbital which is molecular." Comment on this statement.
13. (a) Discuss with the help of the MO theory the formaiton of $\mathrm{N}_{2}, \mathrm{O}_{2}$ and F_{2} molecules. How does the theory explain the difference in the reactivity of $\mathrm{N}_{2}, \mathrm{O}_{2}$ and F_{2} ?
(b) Discuss carefully the electronic configurations of $\mathrm{NO}, \mathrm{CO}, \mathrm{HF}$ and HCl molecules.
14. Draw the MO diagrams for the following species:
$\mathrm{Be}_{2}, \mathrm{HHe}$ (hypothetical), $\mathrm{O}_{2}^{-}, \mathrm{CO}, \mathrm{BN}$
Explain the magnetic character of these species.
15. Write the electronic configutation of NO molecule.
(a) What is the bond order?
(b) Will the bond length be shorter or larger than in NO^{+}?
(c) How many unpaired electrons will be present?
(d) What will be the bond order in NO^{-}?
16. With the help of molecular orbital diagrams explain why
(a) the bond order in N_{2}^{+}ion is less than that in N_{2} molecule whereas the bond order in O_{2}^{+}is greater than that in O_{2} molecule.
(b) the bond energy of NO^{+}is higher than that of NO . (c) the bond length of CO^{+}is larger than that of $\dot{\mathrm{C}} \mathrm{O}$.
17. (a) Write the electronic configuration of a diatomic molecule having bond order three.
(b) Compare briefly valence bond and molecular orbital theories.
18. What is meant by metallic bond? Illustrate the nature of metallic bond on the basis of (i) Electron sea model. (ii) Valence bond model and (iii) The band model (MO approach).
19. Discuss in details the band model of metallic bond. What type of energy bands are obtained in, (i) sodium metal (ii) an insulator (iii) semi-conductor
20. What is meant by hydrogen bonding? Discuss the nature and consequences of hydrogen bonding. Discuss the importance of hydrogen bonding in sustaining life. Why do $\mathrm{H}_{2} \mathrm{O}$ and HF have abnormally high boiling points ?
21. (a) What are intermolecular forces? How do these forces originate?
(b) What are London forces? What is their origin?

Carrying 6 marks each

1. (a) What do you understand by hybridisation? Explain giving examples.
(b) What type of geometry is possible for molecules undergoing the following types of hybridisation :
(i) $s p$
(ii) $s p^{2}$
(iii) $s p^{3}$
(iv) $s p^{3} d(v) s p^{3} d^{2}$
(vi) $s p^{3} d^{3}$
2. (a) Why do molecules have definite geometry? In which of the following types of geometry, all the bond angles are not the same :
(i) Octahedral
(ii) trigonal planar
(iii) trigonal bipyramidal
(iv) tetrahedral
(v) pentagonal bipyramidal.
[Ans. (iii), (v)]
(b) Beryllium $(Z=4)$ has no unpaired electron in its ground state. However, in all its compounds beryllium shows divalency. Explain.
3. (a) What is hybridisation? What are the important characteristics of hybridisation?
(b) The central atom in the molecules of $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ involves $s p^{3}$ hybridisation of its valence shell orbitals. But the bond angles in these molecules are $109 \cdot 5,107^{\circ}$ and $104 \cdot 5^{\circ}$, respectively. Account for this.
(c) What shapes are associated with the molecules involving $s p^{3} d^{2}$ and $s p^{3} d^{3}$ hybridisation?
4. Discuss the stereochemistry of the following molecules on the basis of hybridisation: $\mathrm{PF}_{5}, \mathrm{SnCl}_{2}, \mathrm{NH}_{3}, \mathrm{ClF}_{3}$
5. The ground state electronic configuration of chlorine is $1 s^{2} 2 s^{2} p^{6} 3 s^{2} p^{5}$. Account for the geometry of the following molecules/ions of chlorine :
(a) CliF_{3}
(b) ClO_{4}^{-}
(c) ClO_{3}^{-}
6. On the basis of hybridisation, discuss the geometry of the following molecules :
$\mathrm{SF}_{6}, \mathrm{IF}_{7}, \mathrm{SnCl}_{2}, \mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PCl}_{5}$ and NH_{3}.
7. (a) According to electronic configuration, water should have bond angle $\mathrm{H}-\mathrm{O}-\mathrm{H}$ of 90° and ammonia should have three mutually perpendicular $\mathrm{N}-\mathrm{H}$ bonds but actually both the molecules have unsymmetrical tetrahedral structure. How would you explain this?
(c) Discuss the geometry of molecules having
(i) two lone pairs and two bond pairs (ii) one lone pair and three bond pairs
(iii) one lone pair and four bond pairs (iv) one lone pair and five bond pairs
8. Discuss the geometry of the following ions :
(a) NO_{3}^{-}
(b) CO_{3}^{2-}
(c) SO_{4}^{2-}
(d) ClO_{3}^{-}
(e) ClO_{4}^{-}
9. (a) Why is it necessary to involve hybrid orbitals while trying to account for the geometry of methane molecule ?
(b) Which of PF_{5} or SF_{6} does not have symmetrical geometry and why?
(c) Account for the geometry of $\mathrm{PH}_{3}, \mathrm{OF}_{2}$ and IF_{5} on the basis of concept of hybridisation.
(d) Discuss $s p^{3} d^{3}$ hybridisation with one example.
10. Construct wave functions for $s p, s p^{2}$ and $s p^{3}$.hybrid orbitals.
11. Involving the wave mechanical treatment, discuss the orientation of hybrid orbitals in space.
12. Discuss the VSEPR theory. Illustrate carefully that VSEPR theory has to be combined with the concept of hybridisation to account for the geometry of covalent molecules.

Model questions on Redox Reactions

Carrying 1 mark each

1. Which of the following is not an example of redox reaction?
(i) $\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
(iii) $2 \mathrm{~K}+\mathrm{F}_{2} \rightarrow 2 \mathrm{KF}$
(iv) $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
2. The more positive the value of $\mathrm{E} \ominus$, the greater is the tendency of the species to get reduced. Using the standard electrode potential of redox couples given below find out which of the following is the strongest oxidising agent.

$$
\begin{aligned}
& \mathbf{E}^{\boldsymbol{\theta}} \text { values: } \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=+0.77 ; \mathrm{I}_{2}(\mathrm{~s}) / \mathrm{I}^{-}=+0.54 ; \\
& \mathrm{Cu}^{2+} / \mathrm{Cu}=+0.34 ; \mathrm{Ag}+/ \mathrm{Ag}=+0.80 \mathrm{~V} \\
& 3+
\end{aligned}
$$

(i) Fe (ii) $\mathrm{I}_{2}(\mathrm{~s})$
(iii) Cu^{2+}
(iv) Ag^{+}
3. $E \ominus$ values of some redox couples are given below. On the basis of these values choose the correct option.

$$
\begin{aligned}
& \mathbf{E}^{\ominus} \text { values : } \mathrm{Br}_{2} / \mathrm{Br}^{-}=+1.90 ; \mathrm{Ag}^{+} / \mathrm{Ag}(\mathbf{s})=+0.80 \\
& \mathrm{Cu}^{2+} / \mathrm{Cu}(\mathrm{~s})=+0.34 ; \mathrm{I}_{n}(\mathrm{~s}) / \mathrm{I}^{-}=+0.54
\end{aligned}
$$

(i) Cu will reduce Br
(ii) Cu will reduce Ag
(iii) Cu will reduce I^{-}(iv) Cu will reduce Br_{2}
4. Using the standard electrode potential, find out the pair between which redox reaction is not feasible.

$$
\begin{aligned}
& \mathbf{E}^{\ominus} \text { values }: \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=+0.77 ; \mathrm{I}_{2} / \mathrm{I}^{-}=+0.54 \\
& \mathrm{Cu}^{2+} / \mathrm{Cu}=+0.34 ; \mathrm{Ag}^{+} / \mathrm{Ag}=+0.80 \mathrm{~V}
\end{aligned}
$$

(i) Fe^{3+} and I^{-}(ii) Ag^{+}and Cu
(iii) Fe^{3+}
(iv) Ag and Fe^{3+}
5. Thiosulphate reacts differently with iodine and bromine in the reactions given below:

$$
\begin{aligned}
& 2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-} \\
& \mathrm{S}_{2} \mathrm{O}_{3}^{2-}+2 \mathrm{Br}_{2}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{SO}_{4}^{2-}+2 \mathrm{Br}^{-}+10 \mathrm{H}^{+}
\end{aligned}
$$

Which of the following statements justifies the above dual behaviour of thiosulphate? (i) Bromine is a stronger oxidant than iodine.
(ii) Bromine is a weaker oxidant than iodine.
(iii) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions.
(iv) Bromine undergoes oxidation and iodine undergoes reduction in these reactions.
6. The oxidation number of an element in a compound is evaluated on the basis of certain rules. Which of the following rules is not correct in this respect?
(i) The oxidation number of hydrogen is always +1 .
(ii) The algebraic sum of all the oxidation numbers in a compound is zero.
(iii) An element in the free or the uncombined state bears oxidation number zero.
(iv) In all its compounds, the oxidation number of fluorine is -1 .
7. In which of the following compounds, an element exhibits two different oxidation states.
(i) $\mathrm{NH}_{2} \mathrm{OH}$
(ii) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(iii) $\mathrm{N}_{2} \mathrm{H}_{4}$
(iv) $\mathrm{N}_{3} \mathrm{H}$
8. Which of the following arrangements represent increasing oxidation number of the central atom?
(i) $\mathrm{CrO}_{2}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{CrO}_{4}^{2-}, \mathrm{MnO}_{4}^{-}$
(ii) $\mathrm{ClO}_{3}^{-}, \mathrm{CrO}_{4}^{2-}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{2}^{-}$
(iii) $\mathrm{CrO}_{2}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{4}^{2-}$
(iv) $\mathrm{CrO}_{4}^{2-}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{2}^{-}, \mathrm{ClO}_{3}^{-}$
9. The largest oxidation number exhibited by an element depends on its outer electronic configuration. With which of the following outer electronic configurations the element will exhibit largest oxidation number?
(i) $3 d^{1} 4 s^{2}$
(ii) $3 d^{3} 4 s^{2}$
(iii) $3 d^{5} 4 s^{1}$
(iv) $3 d^{5} 4 s^{2}$
10. Identify disproportionation reaction
(i) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{CH}_{4}+4 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+4 \mathrm{HCl}$
(iii) $2 \mathrm{~F}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{~F}-+\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O}$
(iv) $2 \mathrm{NO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{NO}_{2}^{-}+\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$
11. Which of the following elements does not show disproportionation tendency?
(i) Cl (ii) Br (iii) F
(iv) I

Carrying 1.5 or 2 marks each

1. The reaction
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ represents the process of bleaching. Identify and name the species that bleaches the substances due to its oxidising action.
2. $\mathrm{MnO}_{4}{ }^{2-}$ undergoes disproportionation reaction in acidic medium but MnO_{4}^{-}does not. Give reason.
3. PbO and PbO_{2} react with HCl according to following chemical equations:
$2 \mathrm{PbO}+4 \mathrm{HCl} \rightarrow 2 \mathrm{PbCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{PbO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Why do these compounds differ in their reactivity?
4. Nitric acid is an oxidising agent and reacts with PbO but it does not react with PbO_{2}. Explain why?
5. Write balanced chemical equation for the following reactions:
(i) Permanganate ion $\left(\mathrm{MnO}_{4}^{-}\right)$reacts with sulphur dioxide gas in acidic medium to produce Mn^{2+} and hydrogensulphate ion. (Balance by ion electron method)
(ii) Reaction of liquid hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ with chlorate ion $\left(\mathrm{ClO}_{3}{ }^{-}\right)$in basic medium produces nitric oxide gas and chloride ion in gaseous state. (Balance by oxidation number method)
(iii) Dichlorine heptaoxide $\left(\mathrm{Cl}_{2} \mathrm{O}_{7}\right)$ in gaseous state combines with an aqueous solution of hydrogen peroxide in acidic medium to give chlorite ion $\left(\mathrm{ClO}_{2}^{-}\right)$and oxygen gas.

(Balance by ion electron method)

6. Calculate the oxidation number of phosphorus in the following species.
(a) $\mathrm{HPO}_{3}{ }^{2-}$ and
(b) $\mathrm{PO}_{4}{ }^{3-}$
7. Calculate the oxidation number of each sulphur atom in the following compounds:
(a) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(b) $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
(c) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
(d) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
8. Balance the following equations by the oxidation number method.
(i) $\mathrm{Fe}^{2+}+\mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{I}_{2}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{NO}_{2}+\mathrm{IO}_{3}^{-}$
(iii) $\mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow \mathrm{I}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
(iv) $\mathrm{MnO}_{2}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}$
9. Identify the redox reactions out of the following reactions and identify the oxidising and reducing agents in them.
(i) $3 \mathrm{HCl}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{NOCl}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(ii) $\mathrm{HgCl}_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \longrightarrow \mathrm{HgI}_{2}$ (s) +2 KCl (aq)
(iii) $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (s) +3 CO (g) $\xrightarrow{\Delta} 2 \mathrm{Fe}$ (s) $+3 \mathrm{CO}_{2}$ (g)
(iv) $\mathrm{PCl}_{3}(\mathrm{l})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 3 \mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})$
(v) $4 \mathrm{NH}_{3}+3 \mathrm{O}_{2}$ (g) $\longrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}$ (g)
10. Balance the following ionic equations
(i) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{+}+\mathrm{I}^{-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Fe}^{2+}+\mathrm{H}^{+} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{Br}^{-} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$

Carrying 6 marks each

1. Explain redox reactions on the basis of electron transfer. Give suitable examples.
2. On the basis of standard electrode potential values, suggest which of the following reactions would take place? (Consult the book for $\mathrm{E} \ominus$ value).
(i) $\mathrm{Cu}+\mathrm{Zn}^{2+} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{Zn}$
(ii) $\mathrm{Mg}+\mathrm{Fe}^{2+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{Fe}$
(iii) $\mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{Br}^{-}$
(iv) $\mathrm{Fe}+\mathrm{Cd}^{2+} \longrightarrow \mathrm{Cd}+\mathrm{Fe}^{2+}$
3. Why does fluorine not show disporportionation reaction?
4. Write redox couples involved in the reactions (i) to (iv) given in question 34.
5. Find out the oxidation number of chlorine in the following compounds and arrange them in increasing order of oxidation number of chlorine.
$\mathrm{NaClO}_{4}, \mathrm{NaClO}_{3}, \mathrm{NaClO}, \mathrm{KClO}_{2}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{ClO}_{3}, \mathrm{Cl}_{2} \mathrm{O}, \mathrm{NaCl}, \mathrm{Cl}_{2}, \mathrm{ClO}_{2}$.
Which oxidation state is not present in any of the above compounds?
6. Which method can be used to find out strength of reductant/oxidant in a solution? Explain with an example.
