

Karanjia Auto College, Karanjia, Mayurbhanj

CC-8

Mathematical Physics – III

I. One mark questions.

- 1. Find the complex conjugate of 3-4i.
- 2. Evaluate $\int_{1}^{1+i\pi} e^z dz$
- 3. Find $\int_{\pi/4}^{\pi i/4} \sec^2 z dz$ 4. Evaluate $\oint_c e^z dz$ where C is the unit circle
- 5. Find $\oint_c \cos z \, dz$ where C is any simple closed path.
- 6. Evaluate $\int_{0}^{\pi} \cos\left(\frac{z}{2}\right) dz$. 7. Evaluate $\oint_{c} \frac{2z+1}{z(z+1)} dz$ where C is $|z| = \frac{1}{2}$. 8. Evaluate $\oint_{c} \frac{\cos \pi z}{z-1} dz$, where C is the circle |z| = 3.
- 9. Find the order of zeros of $f(z)=\sin z$.
- 10. The necessary condition for convergence of the Laplace transform is the absolute integrability of $f(t)e^{-st}$. The statement is
 - (a) True (b) False (c) Sometimes true (d) Not related
- 11. Laplace transform of $\delta(t)$ is (a) 1 (b) 0 (c) ∞ (d) 2
- 12. Laplace transform of 2^{t} is (a) 1/In2 (b) 1/(s-In 2) (c) ln 2/(s-2) (d) In (s-2)
- 13. Laplace Transform of Unit Step Function is (a) 1 (b) 1/s (c) s (d) 2s
- 14. Inverse Laplace transform of $s/(2s^2-8)$ is (a) $\cosh 2t$ (b) $\frac{1}{2} \cosh 2t (c) \frac{1}{2} \sinh 2t$ (d) $\sinh 2t$
- 15. If $F(\omega)$ is the Fourier Transform of f(x), then F[f(ax)] is (a) $aF(\omega)$ (b) $(1/a)F(\omega)$ (c) $(1/a)F(\omega)$ (d) (1/a)F(w/a)
- 16. If $F(\omega)$ is the Fourier Transform of f(x), then F[f(x-a)] is (a) $e^{\omega a}(b) e^{i\omega a}(c) e^{-\omega a}(d) e^{-i\omega a}$
- 17. The Fourier transform of a unit step function is given as (a) F (i ω) = 1/i ω (b) F(i ω) $=i\omega(c)F(i\omega)=i/\omega(d)F(i\omega)=\omega/i$
- 18. Fourier transform of $\delta(t)$ is given as (a) Zero (b)1 (c) $2\pi\delta(\omega)$ (d) $\pi\delta(\omega)$
- 19. Find the inverse Fourier transform of $i\omega$. (a) $\delta(t)$ (b) $\frac{d\delta(t)}{dt}$ (c) $\frac{1}{\delta(t)}$ (d) $\int \delta(t) dt$
- 20. The complex integral $\int_c tan (2\pi z) dz$, where C is the curve |z| = 1 is (a) 0 (b) $-2\pi i$ (c) πi (d) $2\pi i$

- 21. $\int_{\mathcal{C}} \frac{dz}{(z-z_0)^2}$
 - (d) 1 , where C is any simple closed contour enclosing z_0 is equal to (a) $2\pi i$ (b) 0 (c) $2\pi i z_0$
- 22. What is the value of $\int_C \frac{dz}{(z^2+4)(z^2+4)}$ where C is |z-i|=2is (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{8}$ (c) $\frac{\pi}{16}$ (d) 2π
- 23. A region which is not simply connected is called _____ region.(a) Multiple curve (b) Jordan connected (c) Multi connected (d) Connected curve
- 24. An integral curve along a simple closed curve is called a (a) Multiple curve (b) Jordan connected (c) Connected curve (d) Contour integral
- 25. If f(z) is analytic and f'(z) is continuous at all points inside and on simple closed curve C, then

(a) $_{c} f(z) dz = 0$ (b) $_{c} f(z) dz \neq 0$ (c) $_{c} f(z) dz = 1$ (d) $_{c} f(z) dz \neq 1$

II. 1.5 mark questions.

- 1. Find the values of i^{53} .
- 2. Find the values of i^{100} .
- 3. Find the values of i^i .
- 4. Show that $(\cos 5\Theta i \sin 5\Theta)^2(\cos 7\Theta + i \sin 7\Theta)^{-3}/(\cos 4\Theta i \sin 4\Theta)^9(\cos \Theta + i \sin \Theta)^5 = 1$.
- 5. Define pole of complex function.
- 6. Determine the value of $L[e^{at}]$.
- 7. Determine the value of $L[\sin \alpha t]$.
- 8. Determine the value of L[t^a].
- 9. Determine the value of L[cos h at].
- 10. Find the finite sine transform of e^{ax}.
- 11. Find the finite sine transform of sin ax.
- 12. Find the Laplace transform of e^{kt} .
- 13. Find the Laplace transform of cos at.
- 14. Find the Laplace transform of sin at.
- 15. Find the inverse Laplace transform of $\overline{s(s-a)}$.
- 16. Find the Laplace transform of $f(t) = 4t^2-3$.
- 17. Find the Laplace transform of $f(t) = 2t^{1/2}$.
- 18. State de Moivre's theorem.
- 19. What is an analytic function ?
- 20. What is a simple and multiple curve ?
- 21. Define the limit and continuity of a complex function.
- 22. State Taylor series expansion.
- 23. Define Laplace transform of a function f(x).
- 24. Find the Laplace transform of the derivative of a function y = f(x).

III. 2.5 mark questions.

- 1. Express in the form of (x + iy) : 1/1+i
- 2. Express in the form of (x + iy) : $(\frac{1+i}{1-i})^2$
- 3. Find the complex conjugate of (2+4i)/(1-i)
- 4. Find the modulus of $1 + \sin \alpha + i \cos \alpha$

- 5. Find the minimum positive integer n for which $\left(\frac{1+i}{1-i}\right)^n = 1$.
- 6. Find the values of x and y so that $z_1=z_2$ if $z_1=3x+5iy$, $z_2=2y+(3x+3)i$
- 7. Obtain Euler's formula for $e^{i\Theta}$.
- 8. Find the region of analyticity of $f(z) = \log z$.
- 9. Find the Fourier transform of the Dirac delta function $\delta(x)$.
- 10. State and explain the 'Change of scale' property of Fourier transform.
- 11. Find Fourier transform of $\frac{1}{x^2+a^2}$.
- 12. Give the definition of Laplace transform.
- 13. State and prove Cauchy's integral theorem for a simple curve.
- 14. Prove Taylor series expansion.
- 15. Define inverse Fourier transform.
- 16. Discuss the linearity property of Fourier transform.
- 17. Discuss the shifting property of Fourier transform.
- 18. Find the Laplace Transform of integral of a function f(x). IV. 5 marks questions
- 1. State and prove de-Moiver's theorem for a positive and negative integer.
- 2. What is an analytic function? What are the necessary and sufficient conditions for the function f(z)=u+iv to be analytic at all points in a given region of R?
- 3. Write notes on Fourier sine and cosine transform.
- 4. Write a note on Fourier transform of derivatives. Define inverse Fourier transform.
- 5. Define Laplace transform of a function f(x). State and prove the change of scale of property and first shifting property of Laplace Transform.
- 6. A resistance R in series with inductance L is connected with e.m.fE(t). The current is given by $\frac{di}{L dt} + \text{Ri=E(t)}$ If the switch is connected at t=0 and disconnected at t=0, find the current I

bv

Laplace Transform method.

- 7. Derive Cauchy-Riemann equations.
- 8. State and prove Taylors theorem.
- 9. State and prove Cauchy's Residue theorem.
- 10. State and prove convolution theorem.
- 11. State and prove that properties of Laplace transform.
- 12. Define periodic function and find out the Laplace transform of the Periodic function f(t).
- 13. Solve the differential equation of damped harmonic oscillator by applying Laplace transform.
- 14. State and prove Cauchy's integral formula.
- 15. State and prove Laurent series expansion.
- 16. State and prove Fourier integral theorem.
- 17. Obtain the Laplace transform of half wave rectifier function.