2022

Time - 3 hours

Full Marks - 80

Answer **all groups** as per instructions.

Figures in the right hand margin indicate marks.

The symbols used have their usual meaning.

GROUP - A

1.	Answer all questi	as required. [1 × 12)	
		or by a state bo	if every cauchy	./

(a) A metric space (X, d) is said to be _____ if every cauchy sequence in X is convergent.

- (b) The intersection of any finite family of open sets is open. (True / False)
- (c) Let (X, d) be a metric space and A, B be subsets of X. Then which is true.

(i)
$$(A \cap B)^0 = A^0 \cap B^0$$

(ii)
$$(A \cup B)^0 \subseteq A^0 \cup B^0$$

(iii)
$$\overline{A \cap B} = \overline{A} \cap \overline{B}$$

(iv) None of these

- (d) The irrationals in IR are of category _____.
- (e) In discrete metric space (X, d), if x, $y \in X$ and $x \neq y$, then $d(x, y) = \underline{\hspace{1cm}}$.
- (f) If A is a closed subset of metric space (X, d), then A = _____.
- (g) A point $x \in X$ is called a fixed point of the mapping $T: X \to X$ if $T_x = \underline{\hspace{1cm}}$.
- (h) $Q \subset \mathbb{R}$ is a connected set. (True / False)
- (i) The function $f:(0, 1) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is continuous but not bounded on (0, 1). (True / False)
- (i) C[0,1] stands for what?
- (k) Every compact metric space X is separable. Is it True of False?
- (I) Let f be a continuous function from a compact metric space (X, d_X) into a metric space (Y, d_Y). Then the range f(X) of f is also _____.

GROUP - B

2. Answer any eight questions.

[2 × 8

- (a) Define open ball and closed ball.
- (b) Prove that, let (X, d) be a metric space and A and B be subsets of X, then $A \subseteq B \Rightarrow A^0 \subseteq B^0$.

- (c) Show that the set Z of integers is a closed subset of the real line.
- (d) Prove that the empty set ϕ is both open and closed.
- (e) Define continuous function on a metric space.
- (f) Define uniform convergence of an sequence.
- (g) Define nowhere dense subset.
- (h) Prove that, if Y is a connected set in a metric space (X, d) then any set Z such that $Y \subseteq Z \subseteq \overline{Y}$ is connected.
- (i) Define compact metric space.
- (j) State contraction Mapping Principle.

GROUP - C

3. Answer any eight questions.

 $[3 \times 8]$

- (a) Let (X, d) be a metric space. Show that any intersection of closed sets is closed.
- (b) Prove that in any metric sapce (X, d), each open ball is an open set.
- (c) Let (X, d) be a metric space and Y a subspace of X. Let $z \in Y$ and r > 0. Then prove that $S_Y(z, r) = S_X(z, r) \cap Y$, where $S_Y(z, r)$ and $S_X(z, r)$ denote the ball with centre z and radius r in Y and in X respectively.

- (d) Let Y be a subspace of a metric space (X, d). Then prove that every subset of Y that is open in Y is also open in X if and only if Y is open in X.
- (e) Prove that in any metric space, there is a countable base at each point.
- (f) Let $f : \mathbb{R} \to \mathbb{C}$ be defined by $f(x) = x + ix^2$. Verify that f is continuous at x = 2.
- (g) Let (X, d_X) , (Y, d_Y) and (Z, d_Z) be metric spaces and let $f: X \to Y$ and $g: Y \to Z$ be continuous. Prove that the composition map gof is a continuous map from X to Z.
- (h) Prove that A mapping f: X → Y is continuous on X, then f⁻¹(F) is closed in X, for all closed subsets F of Y.
- (i) Let $K \subseteq \mathbb{R}$ both closed and bounded and $M = \sup K$, $m = \inf K$. Then prove that M and m are in K.
- (j) Let (X, d) be a metric space and (X, d) is disconnected then prove that there exist two nonempty disjoint subsets A and B both open in X, such that $X = A \cup B$.

GROUP - D

4. Answer any four.

 $[7 \times 4]$

- (a) State and prove Cantor's theorem.
- (b) Show that, let (X, d) be metric space and $F \subseteq X$. Then the following statements are equivalent.

- (i) $X \in \overline{F}$
- (ii) $S(x, \varepsilon) \cap F \neq \phi$ for every open ball $S(x, \varepsilon)$ centred at x.
- (iii) \exists , an infinite sequence $\{x_n\}$ of points of F such that $x_n \to x$
- (c) State and prove Baire's category theorem.
- (d) Show that, if (X, d) be a metric space. The following statements are equivalent.
 - (i) (X, d) is separable.
 - (ii) (X, d) satisfies the second axiom of countability.
 - (iii) (X, d) is Lindelof.
- (e) A mapping f: X → Y is continuous on X if and only if f⁻¹(G) is open in X for all open subsets G of Y.
- (f) Let $\{f_n\}_{n\geq 1}$ a sequence of functions defined on a metric space (X, d_X) with values in a complete space (Y, d_Y) . Then prove that there exists a function $f: X \to Y$ such that $f_n \to f$ uniformly on X. If and only if following condition is satisfied for every $\epsilon > 0$, there exists an integer n_0 such that $m, n \geq n_0$ implies $d_Y(f_m(x), f_n(x)) < \epsilon$ for every $x \in X$.
 - (g) Let (X, d) be a metric space and Y a subset of X. If Y is a compact subset of X, then prove that Y is closed and bounded.