No. of Printed Pages: 4

2022

Time - 3 hours

Full Marks - 60

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

GROUP - A

- 1. Answer <u>all</u> questions and fill in the blanks as required. $[1 \times 8]$
 - (a) State Le-Chatelier's principle.
 - (b) Define enthalpy of combustion.
 - (c) What is molar volume of water?
 - (d) Give the physical significance of Helmholtz free energy.
 - (e) Define Van't Hoff factor.
 - (f) What is molal freezing point depression constant of a solvent?
 - (g) If $\Delta H < 0$ and $\Delta S < 0$, then the reaction proceeds at ______ temperature.
 - (h) State zeroth law of thermodynamics.

GROUP - B

- 2. Answer <u>any eight</u> of the following within two or three sentences each.
 - (a) Define partial molar free energy.
 - (b) Write one statement of 2nd law of thermodynamics.
 - (c) What is the relationship between K_P and K_C for

$$N_2O_4 \rightleftharpoons 2NO_2$$
?

- (d) How is chemical potential related to free energy of a system?
- (e) What is intensive property? Give an example.
- (f) What is the work done when a gas expands against vacuum?
- (g) What is the condition under which Raoult's law becomes same as Henry's law?
- (h) What is fugacity?
- (i) Define adiabatic flame temperature.
- (j) What should be the value of ΔG for a spontaneous process?

GROUP - C

- 3. Answer any eight of the following within 75 words each. [2 × 8
 - (a) What are isotonic and hypertonic solutions?
 - (b) What is abnormal molecular mass? Define Van't-Hoff factor.

- (c) Explain thermodynamic scale of temperature.
- (d) Briefly describe explosion temperature.
- (e) Calculate ΔH^0 for the decomposition of CaCO $_3$. Given that $\Delta_{\rm f} H^0$ for CaO, CaCO $_3$ and CO $_2$ are -635.5 kJ, -1207 kJ and -393.5 kJ respectively.
- (f) State two different forms of 1st law of thermodynamics.
- (g) Differentiate between bond dissociation energy and bond energy.
- (h) Write the Gibb's Helmholtz equation. Specify the different terms involved.
- (i) Show that K_p and K_c are same for $H_2 + I_2 \longrightarrow 2HI$.
- (j) Define reaction quotient. How does it predict the direction of the reaction?

GROUP - D

Answer any four questions within 500 words each.

- 4. Derive the relation between C_p and C_v for 1 mole of an ideal gas. Derive the relation between q, w and ΔU .
- 5. Derive an expression for work done in a reversible isothermal expansion of an ideal gas.
- 6. Derive an expression for Joule Thomson coefficient (μ_{JT}). What is inversion temperature?

- 7. Define Gibb's free energy. How does it very with temperature and pressure? What is residual entropy. [6]
- 8. Derive Gibb's Duhem equation. [6
- 9. Thermodynamically derive the relation between Gibb's free energy of a reaction and reaction quotient. [6]
- 10. How can molecular mass of a solute be determined by elevation in boiling point method? Derive an expression for it.[6]