No. of Printed Pages: 4

2022

Time - 3 hours

Full Marks - 80

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

The symbols used have their usual meaning.

GROUP - A

1.	Ans	wer <u>all</u> questions and fill in the blanks as required. $[1 \times 12]$
	(a)	A commutative ring R is called a if $a^2 = a$ for all $a \in R$.
	(b)	A finite integral domain is a field. (True / False)
	(c)	is the only nilpotent element in an integral domain.
	(d)	The inverse image of a prime ideal is maximal. (True / False)
	(e)	Is the ring 2Z isomorphic to the ring 4Z?
	(f)	Define ring homomorphism.
	(g)	Are there any nonconstant polynomials in $Z[x]$, that have multiplicative inverse ? (Yes / No)
	(h)	Find the sum of the polynomial ring if
		$f(x) = x + 1$, $g(x) = x + 1$, in $Z_2[x]$.

- (i) The product of two primitive polynomials is ______.
- (j) Every principal ideal domain is a unique factorization domain.(True / False)
- (k) Is a sub-ring of a UFD a VFD? (Yes / No)
- (I) If D is a UFD, then D(F) is a UFD. (True / False)

GROUP - B

2. Answer any eight questions.

 $[2 \times 8]$

- (a) If R be a ring, then show that the zero element is unique.
- (b) Find all idempotent elements in $Z_3 \oplus Z_6$.
- (c) Show that $2Z \cup 3Z$ is not a subring of Z.
- (d) If R is a ring with unity and N is an ideal of R containing a unit, then show that N = R.
- (e) Find all maximal ideals of $Z_8 \oplus Z_{30}$.
- (f) Find multiplicative inverse of the polynomial 2x + 1 in $Z_4[x]$.
- (g) If $f(x) = x^3 + 2x^2 x + 1$ and g(x) = x + 1 in $Z_3[x]$, determine the quotient and remainder upon dividing f(x) by g(x).
- (h) If D be an integral domain and f(x), $g(x) \in D[x]$, then show that deg(f(x), g(x)) = deg(f(x) + dex g(x)).
- (i) Show that every field is a Euclidean domain.

(j) Show that the polynomial $x^2 + 1$ is irreducible over Z_3 but reducible over Z_5 .

GROUP - C

3. Answer any eight questions.

 $[3 \times 8]$

- (a) Determine U(Z[x]).
- (b) Prove that in the ring Z_n, the divisors of O are precisely those non zero elements that are not relatively prime to n.
- (c) Prove that the characteristic of an integral domain is either zero or prime.
- (d) Show that $\phi: C[0, 1] \to R \oplus R$ defined by $\phi(f) = (f(0), f(1))$ is a homomorphism.
- (e) Prove that the sum of the squares of three consecutive integers cannot be a square.
- (f) Show that Q is not isomorphic to $Q[\sqrt{2}]$.
- (g) Find all irreducible polynomials of degree 3 in $Z_2[x]$.
- (h) Construct field of order 27.
- (i) Show that Z[x] is not a PID. (Principal Ideal Domain).
- (j) Give an example of a unique factorization domain with a subdomain that does not have a unique factorization.

P.T.O.

GROUP - D

Answer any four questions.

[7

[7

State and prove Existence of factor rings.

5.	Show that the ring $Z[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in Z\}$ is an integer domain.	gral [7
6.	State and prove first isomorphism theorem for Rings.	[7
7.	That if R has commutative ring with unity and let A be	an [7
8.	State and prove Division algorithm for F[x].	[7
9.	Show that $Z_3[x]/(x^2+1)$ is isomorphic to $Z_3[i] = \{a_i + b \mid a, b \in Z_3[i]\}$	Z ₃ }.

- Prove that in a principal ideal domain, an element is prime if and only if it is irreducible.
- 11. Show that the ring of Gaussian integers $Z[i] = \{a + b_i \mid a, b \in Z\}$ is an Euclidean domain.