No. of Printed Pages: 4

2022

Time - 3 hours Full Marks - 60

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

Candidates are required to answer

in their own words as far as practicable.

GROUP - A

		£4 · · · 0
1.	Fill in	n the blanks. (<u>all</u>) [1 × 8
	(a)	The momentum of a moving photon of wavelength $\boldsymbol{\lambda}$ is
		·
	(b)	The maximum kinetic energy of photo-electrons depends on
		·
	(c)	The rest mass of photon is
	(d)	The total energy of electron in an atom is
	(e)	The ground state energy of Hydrogen atom is
	(f)	The wavelength of de-Broglie waves associated with a particle at rest is
	(g)	When an alpha particle captures an electron, it becomes a
		···································

P.T.O.

(h) Average life of a neutron is 1000 seconds. Its half life is

GROUP - B

- Answer <u>any eight</u> of the following questions within two to three sentences each. [1½ x 8
 - (a) What is zero point energy?
 - (b) Using Bohr theory, calculate the radius of the innermost orbit of a hydrogen atom.
 - (c) Write Einstein's photoelectric equation.
 - (d) Name two elements of the periodic table, whose nucleus are stable.
 - (e) What is the relation between the mass number and nuclear radius?
 - (f) Give two examples, where classical physics fails to explain the phenomenon.
 - (g) In which process more energy is released: Fission or Fusion?
 - (h) What do you mean by atomic spectra?
 - (i) What do you mean by Wave particle duality?
 - (j) What is the law of radioactive decay?

GROUP - C

- 3. Answer <u>any eight</u> of the following questions within 75 words each.
 - (a) State Bohr's correspondence principle.
 - (b) What is mass defect? How is it related to Binding energy?
 - (c) Define half life period of radioactive substance.
 - (d) State Heisenberg's uncertainty principle.
 - (e) Define 1 a.m.u and how is it related of MeV?
 - (f) Show stability of the nucleus through the N-Z graph.
 - (g) What is the longest wavelength in Balmer series of Hydrogen atom?
 - (h) What is nuclear fission and nuclear fusion?
 - (i) What is positive beta decay in the nuclear process?
 - (j) What is negative beta decay in the nuclear process?

GROUP - D

Answer any four questions within 500 words each.

- 4. Explain Rutherford's alpha particle scattering experiment and derive the expression for the Rutherford's scattering formula. [6]
- 5. Explain the Franck-Hertz experiment in detail with diagram. [6

P.T.O.

6.	Write notes on within 250 words each.

- (a) Davisson-Germer experiment
- (b) Gaussian wave packet
- 7. (a) Discuss the Heisenberg uncertainty principle in detail with examples. [3
 - (b) Explain the ground state energy of one dimensional harmonic oscillator. [3
 - 8. Briefly discuss about the nonexistence of electrons in a nucleus on the basis of uncertainty principle.
 - 9. Derive semi-empirical masse formula alongwith the discussion of significance of each term.
 - 10. Discuss the difference between fission and fusion reaction. Calculate the amount of energy released by fission of 1 kg U-235 in kwh.
 - 11. Write a note on Electron-positron pair creation by gamma photons.

 $[3 \times 2]$