2023-24

Time - 3 hours

Full Marks - 60

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

Candidates are required to answer
in their own words as far as practicable.

GROUP - A

Fill	in the blanks. (all) [1 \times 8
(a)	Dimensions of 3-dimensional wave function is
(b)	If $\int_{-\infty}^{+\infty} \Psi^* \Psi \ dx = N$, where N is a number, then norm of wavefunction $\Psi = \underline{\hspace{1cm}}$.
(c)	The commutation $[\hat{P}_j,\hat{P}_k]=$ for all the components of \vec{p} .
(d)	operators always give real eigenvalues.
(e)	For stationary states, probability density at each point is of time.

(f) Solution of Schrodinger equation in 1-D potential box gives a series of stationary ______ waves.

(g) The magnetic moment of spinning electron is always equal to one _____.

(h) Quantum mechanical operator of K.E. is ______ ir 3-dimensional motion.

GROUP - B

- Answer <u>any eight</u> of the following within two or three sentences each.
 - (a) Write the equation of continuity in quantum mechanics and explain each term.
 - (b) State the limitations for wave function ψ .
 - (c) Write orthogonality condition for two wave functions.
 - (d) What is the value of zero-point energy of 1-D harmonic oscillator having angular frequency w?
 - (e) What is confirmed by Stern-Gerlach experiment?
 - (f) Define orbital gyromagnetic ratio (g) and write its expression.
 - (g) State two Ehrenfest's theorems in mathematical form.

- (h) Find the commutation $[L_x^2, L_x]$ where L_x represents x-component of angular momentum.
- (i) If $\psi = A e^{i\vec{k}\cdot\vec{r}}$ represents a wave function ψ , then find the probability density of finding the particle.
- (j) Explain anomalous Zeeman effect.

GROUP - C

- 3. Answer any eight of the following within 75 words each. [2 × 8
 - (a) Give Born's interpretation of wave function.
 - (b) State the principle of superposition in quantum mechanics.
 - (c) Find the commutation $[\hat{H}, \hat{P}_x]$, where H = Hamiltonian and P = momentum.
 - (d) Normalise the wavefunction $\psi(x)$, where

$$\psi(x) = A e^{-\alpha x}$$
 for $x > 0$

and $\psi(x) = A e^{+\alpha x}$ for x < 0 and α is some constant.

- (e) State Larmor's theorem.
- (f) Distinguish between Stark effect and Zeeman effect.
- (g) Write a short note on quantum dot.

- (h) The ground state energy of a particle in 1-D potential box is 2 eV. Find its energy in 2nd excited state.
- Explain briefly barrier penetration in potential problems.
- (j) Distinguish between L-S coupling and J-J coupling.

GROUP - D

- 4. Answer any four of the following within 500 words each. [6 × 4
 - Obtain equation of continuity from Schrodinger equation and explain probability current.
 - (b) Using Fourier transformation, find the momentum space wave function from co-ordinate space wave function.
 - (c) Find the commutator relation between Hamiltonian operator $(\hat{\mathbf{H}})$ and x-component of linear momentum operator $(\hat{\mathbf{P}}_x)$.
 - (d) Prove that:
 - (i) Eigenvalues of hermitian operator are real. [3
 - (ii) Any two eigenfunctions of a Hermitian operator belonging to different eigenvalues are real. [3
 - (e) A particle is trapped inside a finite square well potential. Solve Schrodinger equation to obtain the even and odd solutions for wave functions and transcendental equations. Briefly mention the graphical solutions.

- (f) A particle having energy E faces a 1-D potential step of height V₀, such that E > V₀. Solve Schrodinger equation to obtain Transmission and Reflection coefficients.
- (g) Explain normal Zeeman effect by using vector atom model.