2020-21 *Time - 3 hours*

Full Marks – 80

Answer **all groups** as per instructions. Figures in the right hand margin indicate marks. Candidates are required to answer in their own words as far as practicable.

<u>Group-A</u>

- 1. Answer <u>all</u> questions or fill in blanks as required. [1x12]
 - a) The value of $\lim_{x \to 1} \frac{\log x}{x-1}$ is _____.
 - b) What is maximum value of $\cos(\cos(\sin x))$?
 - c) Which of the following is not an indeterminate form?

(Choose the correct answer)

- i) $\infty + \infty$ ii) $\infty \infty$ iii) ∞ / ∞ iv) $0 \times \infty$
- d) Give an example of a function which is Riemann integrable but not monotonic.
- e) If f is integrable on [a, b], f² is also integrable. (True / False).
- f) Give an example of a function which is not integrable but |f| is integrable.
- g) What is improper integrable of first kind?
- h) A proper integral is always convergent. (True/False)
- i) $\int_0^\infty e^{-cx} dx$ is equal to: (Choose the correct answer)
 - i) $c^{n}\Gamma(n)$ ii) $c^{n-1}\Gamma(n)$ iii) $\frac{(\Gamma(n))}{c^{n}}$ iv) $\frac{(\Gamma(n))}{c^{n-1}}$
- j) When a sequence of function $\{f_n\}$ is said to be convergent on S \subseteq D?
- k) If $\Sigma a_n z_0^n$ is convergent, then when $\Sigma a_n z^n$ is absolutely convergent?
- I) What is the radius of convergence of Σ n ! z^n ?

<u>Group-B</u>

- Answer <u>any eight</u> of the following questions within two or three sentences each. [2x8]
 - a) Evaluate $\lim_{x \to 0^+} \left(\frac{1}{x} \frac{1}{\sin x}\right)$.
 - b) Verify mean value theorem for f(x) = log x in [1, e].
 - c) Prove $\beta(m, n) = \beta(n, m)$.
 - d) Evaluate $\lim_{X \to \infty} \frac{\log x}{x^m}$ (m > 0).
 - e) Show that maximum value of $\left(\frac{1}{x}\right)^x$ is $(e)^{\frac{1}{e}}$.
 - f) Show that for a > -1,

$$\lim_{n \to \infty} \frac{1}{n^{a+1}} \sum_{k=1}^{n} \frac{1}{k^{a+1}} = \frac{1}{a+1}$$

- g) Test the convergence of the integral $\int_0^\infty \frac{1}{\sqrt{x^2+1}} dx$.
- h) Prove that the sequence (f_n) where $f_n(x) = \frac{1}{x+n}$ converges pointwise to 0.
- i) Test the uniformly convergence of the sequence

$$f_n(x) = \frac{nx}{1+n^2x^2} \quad x \in [0,\infty]$$

j) Find the radius of convergence of the power series

$$1 + \frac{x}{2} + \left(\frac{x}{4}\right)^2 + \left(\frac{x}{2}\right)^3 + \left(\frac{x}{4}\right)^4 + \dots$$

GROUP-C

- 3. Write notes on any eight of the followings within 75 words: [3x8]
 - a) Evaluate $\frac{\lim_{x \to 0} \frac{\sin^{-1} x \tan^{-1} x}{x^3}}{x^3}.$
 - b) Find the extreme value of the function $f(x) = \sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x$ $\forall [0, \pi].$

- c) Using Taylor' theorem, find a polynomial of f(x) of degree 2 which satisfies f(1) = 2, f'(1)=-1 and f"(1)=2.
- d) Prove that a constant function on [a, b] is integrable.
- e) Prove that every monotonic function on [a, b] is integrable.
- f) Show that $\int_0^\infty \frac{x^2}{(1+x^2)^2} dx$ is convergent.
- g) Prove that $\Gamma(n+\frac{1}{2}) = \frac{(2n)!\sqrt{\pi}}{4^n \cdot n!}$, n= 0, 1, 2.
- h) Let f: R \rightarrow R be uniformly continuous in R and $f_n(x) = f(x + \frac{1}{n})$ for all $x \in$ R. Prove that (f_n) converges uniformly to f on R.
- i) Prove Abel's theorem.
- j) Determine the interval of uniform convergence of the series

$$\sum_{n=1}^{\infty} k^{a} = \frac{x^{n^{n}}}{n^{n}}$$

GROUP-D

- 4. Answer <u>any four</u> questions within 500 words each. [7x4]
 - a) Prove that $1 \frac{1}{2} x^2 \le \cos x$, $x \in R$.
 - b) Expand sin x in powers of $(x \frac{\pi}{4})$ with the help of Taylor's theorem.
 - c) Prove that x^2 is integrable on any interval [0, k].
 - d) If $f \in C[0, 1]$, show that $\lim_{X \to 1} \int_0^1 (n+1)x^n f(x) dx = f(1)$ e) Prove that $\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$
 - f) Prove that $\int_0^\infty e^{-cx^2} dx = \frac{1}{2}\sqrt{\pi}.$
 - g) Show that

$$tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, -1 \le x \le 1.$$

KACK - 2021