2020-21 Time - 3 hours Full Marks – 80

Answer **all groups** as per instructions. Figures in the right hand margin indicate marks. Candidates are required to answer in their own words as far as practicable.

Group-A

- 1. Answer <u>all</u> questions or fill in blanks as required. [1x12]
 - a) Give an example of a second order quasilinear partial differential equation.
 - b) What is non-linear equation?
 - c) What is wave equation?
 - d) Define linear differential equation.
 - e) P(x, y, z) p+ Q(x, y, z) q = R(x, y, z) is _____.
 - (Choose the correct answer.)
 - I) Lagrange's equation
 - II) Charpit's equation
 - III) Euler's equation
 - IV) Pfaffian equation
 - f) $(\lambda x, \lambda y) = \lambda^n f(x, y)$ then f(x, y) is_____.
 - g) A partial differential equation which is not quasi linear is said to be.
 - (Choose the correct answer)
 - I) Linear iii) Semi-linear
 - II) Non-linear (iv) All of the above
 - h) Obtain the differential equation if $Y = A \sin n + \cos n$.
 - Number of independent variables in partial differential equation are______.

j) What is Cauchy problem?

<u>Group-B</u>

- Answer <u>any eight</u> of the following questions within two or three sentences each. [2x8]
 - a) Define complete integral.
 - b) Define a singular solution with a suitable example.
 - c) Give an example of quasi-linear equation.
 - d) Define D'Alembert's solution.
 - e) What is non-homogeneous wave equation?
 - f) Define homogeneous equation.
 - g) Solution of the differential equation $\frac{dy}{dx}$ = 2x subject to the conditions y(1) = 4. Prove it.
 - h) What is the order of ODE

$$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^3 = \sqrt{\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^2 + 1}?$$

- i) What is the general solution of the differential equation (1 + x)dy y dx = 0.
- j) What is semi-linear partial differential equation?

GROUP-C

- 3. Write notes on any eight of the followings within 75 words: [3x8]
 - a) Eliminate the function z from $z = e^{mn}f(x + y)$.
 - b) Eliminate the arbitrary constant of $x^2 + y^2 + (z c)^2 = a^2$.
 - c) Find the general solution of the system by the trial solution method

$$\frac{dy}{dt} = x + 3y$$

$$\frac{dy}{dt} = 3x + 3y$$

- d) Solve: $x \frac{\partial u}{\partial x} + y \frac{du}{dy} + z \frac{du}{dz} + xyz$.
- e) Solve the boundary value problem $\frac{d^2x}{dx^2}$ + 2y = 0, y(0) = 1, y(π) = 0.
- f) Find out the general solution of $1.u_x=0$.
- g) Define one-dimensional heat equation.

- h) What is Laplace equation?
- i) Solve: $y^2p xyq = n(z 2y)$.
- j) Find the solution of the ordinary differential equation: $\frac{dy}{dx} = 2n + 1$

GROUP-D

- 4. Answer <u>any four</u> questions within 500 words each. [7x4]
 - a) Find the general solution of $zxp zyq = y^2 x^2$.
 - b) Use the separation of variables to solve the equation $u_x^2+u_y^2=1$.
 - c) Reduce the following equation into a Canonical form and find out the general solution $u_x u_y = u$.
 - d) Solve the quasi-linear equation:

$$x(y^{2} + u) u_{x} - y(x^{2} + u) u_{y} = (x^{2} - y^{2})u.$$

- e) Find the general solution of $(1 + x^2)u_x + u_y = 0$.
- f) Solve the linear equation $yu_x + xu_y = u$. with the Cauchy data $u(x, 0) = x^3$ and $u(y, 0) = y^3$.
- g) Find out the general solution of Laplace equation in two-dimensions.
- h) Find out the solution of initial boundary value problem

$$u_{tt} = u_{xx}, \quad 0 < x < \infty, t > 0$$
$$u(x, 0) = \cos \frac{\pi x}{2} \quad 0 \le x < \infty:$$
$$u_t(x, 0) = 0, \quad 0 \le x < \infty.$$
$$u_t(x, 0) = 0 \quad t \ge 0.$$
