2020-21 Time - 3 hours Full Marks – 60

Answer **all groups** as per instructions. Figures in the right hand margin indicate marks. Candidates are required to answer in their own words as far as practicable.

<u>Group-A</u>

- 1. Answer <u>all</u> questions.
 - a) What is the value of $\Gamma(-1)$?
 - b) Does Beta function satisfy symmetry property?
 - c) Can derivative of an odd function be an even function?
 - d) Find order and degree of differential equation

 $x^2y'' + xy' + by = 0.$

- e) Define a periodic function.
- f) What is systematic error?
- g) What is the value of odd function at the origin?
- h) Define exact equation.

Group-B

- 2. Answer <u>any Eight</u> of the following questions within two or three sentences each. $[1\frac{1}{2}x8]$
 - a) State Dirichlet's conditions.
 - b) Show that derivative of an odd function is an even function.
 - c) Locate the singular point of differential equation $x^2y'' + (2-x)y' = 0$.
 - d) Determine the nature of point x=0 for the equation y'' + (sin x) y = 0.
 - e) State the relation between Beta function and Gamma function.
 - f) Compute: $\frac{\Gamma(3)\Gamma(4)}{\Gamma(5)}$

1

[1x8]

- g) Find $\Gamma(\frac{3}{2})$
- h) Using generating function for Legendre polynomial, show that

 $P_n(1) = 1.$

- i) State the orthogonality property of Hermite polynomial.
- j) Show that $\Gamma(0) = \infty$.

GROUP-C

- 3. Write notes on any eight of the followings within 75 words: [2x8]
 - a) Write a note on Fourier sine series.
 - b) Mention the usefulness of Fourier series.
 - c) State the convergence property of Fourier series.
 - d) Find the value of $\Gamma(\frac{1}{4}) \Gamma(\frac{3}{4})$.
 - e) Show that $\beta(m+n) = \frac{m+n}{m}\beta(m, n+1)$.
 - f) Define error function of x. Show that error function of infinity is one.
 - g) Show that $P(-x) = (-1)^n P_n(x)$.
 - h) Prove that $H_2(x) = 4x^2-2$.
 - i) Evaluate $\int_0^\infty e^{-x^2} x^3 dx$.
 - j) Express x² in terms of Legendre's polynomial.

GROUP- D

- 4. Answer <u>any four</u> questions within 500 words each. [6x4]
 - a) Find the Fourier series on the interval (0, 2π) for the function f(x) = x.
 - b) Derive Rodrigue's formula for Legendre's polynomial.
 - c) Write notes on (i) Cosine integral, (ii) Sine integral, (iii) Exponential form of Fourier series.
 [2 x 3]
 - d) Solve the Hermite's differential equation by power series method.
 - e) State and prove the orthogonality property of Hermite polynomial.

f) Show that
$$\beta$$
 (m, n + 1) = $\frac{n}{m+n} \beta$ (m, n).

g) Find $\int_{0}^{1} (x \log x)^{3} dx$.

h) Find the solution of Laplace equation in cylindrical coordinates by using the method of separation of variable.

KACK - 2021