2020-21

Time - 3 hours Full Marks - 60

Answer **all groups** as per instructions.

Figures in the right hand margin indicate marks.

Candidates are required to answer in their own words as far as practicable.

Group-A

1. Answer <u>all</u> questions.

[1x8]

- a) In what type of expansion, gas peforms zero work?
- b) Can whole of work be converted into work?
- c) What is the net entropy change in a Carnot's cycle?
- d) Does C_v vary with volume for a perfect gas?
- e) Define critical pressure.
- f) What is the relation between Calorie and Joule?
- g) Does efficiency of a heat engine depend on nature of working substance?
- h) Define a surface film.

Group-B

- 2. Answer <u>any eight</u> of the following questions within two or three sentences each. $[1\frac{1}{2}x8]$
 - a) Write first law of thermodynamics in mathematical form.
 - b) The efficiency of a heat engine cannot be 100%? Explain.
 - c) Why $C_p > C_v$?
 - d) What is the entropy of combination of two systems with entropies S_1 and S_2 ?
 - e) What is enthalpy?
 - f) Define temperature of inversion.

- g) Why a gas has two specific heats?
- h) How is ratio of two specific heats of a gas related to degrees of freedom?
- i) What is compressibility factor?
- j) What are the units of second Virial coefficients?

GROUP-C

- 3. Write notes on <u>any eight</u> of the followings within 75 words: [2x8]
 - a) What are the limitations of the first law of thermodynamics?
 - b) A reversible engine converts one-sixth of heat input into work. When sink temperature is reduced by 62K, its efficiency is doubled. Find temperature of the source.
 - c) Distinguish between intensive and extensive parameters.
 - d) What is the physical significance of Gibb's function?
 - e) State the conclusions of porus plug experiment.
 - f) What are the values of C_p and C_v for a diatomic gas?
 - g) How mean free path varies with density of gas?
 - h) What is collision probability? How is it related to mean free path?
 - i) Express Vander Waal's equation of state in Virial form.
 - j) Show that for a gas obeying Vander Waal's equation of state

$$\frac{RT_c}{P_cV_c} = \frac{8}{3}.$$

GROUP-D

4. Answer <u>any four</u> questions within 500 words each.

[6x4]

- a) What is T-S diagram? Using it, derive the expression for efficiency of Carnot's engine.
- b) i) Prove that the entropy of a thermodynamic system remains constant in any reversible process.
 - ii) What is the significance of DS ≥ 0 in relation to entropy?

- c) Define Helmholtz function and Gibb's function. Derive thermodynamical relation between them.
- d) Discuss the variation of C_v with volume and variation of C_p with pressure using Maxwell's relation. Find the expression for C_p C_v for one mole of an ideal gas.
- e) State Joule-Thomson effect. Discuss the porus plug experiment and discuss the practical utility of this effect.
- f) Calculate the average and root mean square speed of the molecules obeying M-B statistics.
- g) Explain the reasons for modification of perfect gas equation. Derive and discuss Vander Waal's equation of state of a gas.
